Mapping of contact sites in complex formation between light-activated rhodopsin and transducin by covalent crosslinking: use of a chemically preactivated reagent.

نویسندگان

  • Y Itoh
  • K Cai
  • H G Khorana
چکیده

Contact sites in interaction between light-activated rhodopsin and transducin (T) have been investigated by using a chemically preactivated crosslinking reagent, N-succinimidyl 3-(2-pyridyldithio)propionate. The 3 propionyl-N-succinimidyl group in the reagent was attached by a disulfide exchange reaction to rhodopsin mutants containing single reactive cysteine groups in the cytoplasmic loops. Complex formation between the derivatized rhodopsin mutants and T was carried out by illumination at lambda > 495 nm. Subsequent increase in pH (from 6 to 7.5 or higher) of the complex resulted in crosslinking of rhodopsin to the T(alpha) subunit. Crosslinking to T(alpha) was demonstrated for the rhodopsin mutants K141C, S240C, and K248C, and the crosslinked sites in T(alpha) were identified for the rhodopsin mutant S240C. The peptides carrying the crosslinking moiety were isolated from the trypsin-digested peptide mixture, and their identification was carried out by matrix-assisted laser desorption ionization-time of flight mass spectrometry. The main site of crosslinking is within the peptide sequence, Leu-19-Arg-28 at the N-terminal region of T(alpha). The total results show that both the N and the C termini of T(alpha) are in close vicinity to the third cytoplasmic loop of rhodopsin in the complex between rhodopsin and T.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mapping of contact sites in complex formation between transducin and light-activated rhodopsin by covalent crosslinking: use of a photoactivatable reagent.

Interaction of light-activated rhodopsin with transducin (T) is the first event in visual signal transduction. We use covalent crosslinking approaches to map the contact sites in interaction between the two proteins. Here we use a photoactivatable reagent, N-[(2-pyridyldithio)-ethyl], 4-azido salicylamide. The reagent is attached to the SH group of cytoplasmic monocysteine rhodopsin mutants by ...

متن کامل

Structure and function in rhodopsin: covalent crosslinking of the rhodopsin (metarhodopsin II)-transducin complex--the rhodopsin cytoplasmic face links to the transducin alpha subunit.

We prepared rhodopsin mutants that contained a single reactive cysteine residue per rhodopsin molecule at position 65, 140, 240, or 316 on the cytoplasmic face. A carbene-generating photoactivatable group was linked by a disulfide bond to the cysteine sulfhydryl group of each of the rhodopsin mutants. The resulting derivative was then light-activated at lambda > 495 nm to form the metarhodopsin...

متن کامل

Light-induced conformational changes of rhodopsin probed by fluorescent alexa594 immobilized on the cytoplasmic surface.

A novel fluorescence method has been developed for detecting the light-induced conformational changes of rhodopsin and for monitoring the interaction between photolyzed rhodopsin and G-protein or arrestin. Rhodopsin in native membranes was selectively modified with fluorescent Alexa594-maleimide at the Cys(316) position, with a large excess of the reagent Cys(140) that was also derivatized. Mod...

متن کامل

Mechanism of quenching of phototransduction. Binding competition between arrestin and transducin for phosphorhodopsin.

Quenching of phototransduction in retinal rod cells involves phosphorylation of photoactivated rhodopsin by the enzyme rhodopsin kinase followed by binding of the protein arrestin. Although it has been proposed that the mechanism of arrestin quenching of visual transduction is via steric exclusion of transducin binding to phosphorylated light-activated rhodopsin (P-Rh*), direct evidence for thi...

متن کامل

Differential spatial and temporal phosphorylation of the visual receptor, rhodopsin, at two primary phosphorylation sites in mice exposed to light.

Phosphorylation of rhodopsin critically controls the visual transduction cascade by uncoupling it from the G-protein transducin. The kinase primarily responsible for this phosphorylation is rhodopsin kinase, a substrate-regulated kinase that phosphorylates light-activated rhodopsin. Protein kinase C has been implicated in controlling the phosphorylation of both light-activated and dark-adapted ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 98 9  شماره 

صفحات  -

تاریخ انتشار 2001